Packing equal squares into a large square

نویسندگان

  • Fan Chung Graham
  • Ronald L. Graham
چکیده

Let s(x) denote the maximum number of non-overlapping unit squares which can be packed into a large square of side length x. Let W (x) = x − s(x) denote the “wasted” area, i.e., the area not covered by the unit squares. In this note we prove that W (x) = O ( x √ 2)/7 log x ) . This improves earlier results of Erdős-Graham and Montgomery in which the upper bounds of W (x) = O(x) and W (x) = O(x(3− √ 3)/2 log x), respectively, were obtained. A complementary problem is to determine s′(x) the minimum number of unit squares needed to cover a large square of side length x. We show that s(x) = x + O ( x √ 2)/7 log x ) , improving an earlier bound of x + O(x).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translative Packing of Unit Squares into Equilateral Triangles

Every collection of n (arbitrary-oriented) unit squares can be packed translatively into any equilateral triangle of side length 2.3755 ̈ ? n. Let the coordinate system in the Euclidean plane be given. For 0 ≤ αi ă π{2, denote by Spαiq a square in the plane with sides of unit length and with an angle between the x-axis and a side of Spαiq equal to αi. Furthermore, let T psq be an equilateral tr...

متن کامل

Improved Online Square-into-Square Packing

In this paper, we show an improved bound and new algorithm for the online square-into-square packing problem. This twodimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. The goal is to find the largest area α such that any set of squares with total area α can be packed. We show an algorithm that can pack an...

متن کامل

On Packing Squares with Equal Squares

The following problem arises in connection with certain multidimensional stock cutting problems : How many nonoverlapping open unit squares may be packed into a large square of side a? Of course, if a is a positive integer, it is trivial to see that a2 unit squares can be successfully packed . However, if a is not an integer, the problem becomes much more complicated . Intuitively, one feels th...

متن کامل

Improved Bound for Online Square-into-Square Packing

We show a new algorithm and improved bound for the online square-into-square packing problem using a hybrid shelf-packing approach. This 2-dimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. We seek the largest area α such that any set of squares with total area at most α can be packed. We show an algorithm...

متن کامل

2 Ja n 20 14 Improved Online Square - into - Square Packing ⋆ Brian

In this paper, we show an improved bound and new algorithm for the online square-into-square packing problem. This twodimensional packing problem involves packing an online sequence of squares into a unit square container without any two squares overlapping. The goal is to find the largest area α such that any set of squares with total area α can be packed. We show an algorithm that can pack an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 116  شماره 

صفحات  -

تاریخ انتشار 2009